Amazon cover image
Image from Amazon.com

Introduction to smooth Ergodic Theory/ Luis Barreira and Yakov Pesin

By: Barreira, LuisMaterial type: TextTextSeries: Graduate Studies in Mathematics 231Publication details: Providence, Rhode Island: American Mathematical Society, 2023. Edition: 2nd edDescription: xv,337pISBN: 9781470473075Summary: This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on the absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. The authors also present a detailed description of all basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature. This book is aimed at graduate students specialising in dynamical systems and ergodic theory as well as anyone who wants to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. With more than 80 exercises, the book can be used as a primary textbook for an advanced course in smooth ergodic theory. The book is self-contained and only a basic knowledge of real analysis, measure theory, differential equations, and topology is required and, even so, the authors provide the reader with the necessary background definitions and results.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Shelving location Call number Materials specified Status Date due Barcode
Books TIFR CAM Library
SERIES Available M12240

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on the absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. The authors also present a detailed description of all basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature.

This book is aimed at graduate students specialising in dynamical systems and ergodic theory as well as anyone who wants to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. With more than 80 exercises, the book can be used as a primary textbook for an advanced course in smooth ergodic theory. The book is self-contained and only a basic knowledge of real analysis, measure theory, differential equations, and topology is required and, even so, the authors provide the reader with the necessary background definitions and results.

There are no comments on this title.

to post a comment.

Powered by Koha